CHRONOLOGY OF POSTGLACIAL POLLEN PROFILES IN THE PACIFIC NORTHWEST (U.S.A.)

HENRY P. HANSEN

Graduate School, Oregon State University, Corvallis, Oregon (U.S.A.)

(Received August 28, 1966)

ABSTRACT

Composite pollen profiles from many peat sections in the Pacific Northwest showing Postglacial forest sequences are correlated in Table I with radiocarbon-dated pumice and ash. The "thermal interval" is shown from 8,000 to 4,000 years ago. A bibliography is added of papers by the author which are relevant to this subject.

BIBLIOGRAPHY


TABLE I

POSTGLACIAL POLLEN PROFILES IN THE PACIFIC NORTHWEST CORRELATED WITH RADIOCARBON-DATED PUMICE AND ASH¹ (AFTER HANSEN, 1961)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hemlock Predominance</td>
<td>Lodgepole</td>
<td>Yellow Pine</td>
<td>Douglas Fir</td>
<td>Hemlock</td>
<td>Lodgepole</td>
<td>Lodgepole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Douglas Fir FIr</td>
<td>Douglas Fir</td>
<td>White Pine</td>
<td>Lodgepole</td>
<td>Lodgepole</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>White Pine</td>
<td>Spruce</td>
<td>Lodgepole</td>
<td>Fir</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Cooler Moister</td>
<td>Cooler Moister</td>
<td>Cooler Moister</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Douglas Fir Decline</td>
<td>Yellow Pine</td>
<td>Gr. Chenopods</td>
<td>Gr. Bones</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Hemlock Volcanic</td>
<td>Thermal Intervals</td>
<td>Volcanic</td>
<td>Volcanic</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ash</td>
<td>Ash</td>
<td>Ash</td>
<td>Thermal Intervals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Douglas Fir</td>
<td>Warming</td>
<td>Warming Drying</td>
<td>Douglas Fir</td>
<td>Warming Drying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>White Pine</td>
<td>Lodgepole</td>
<td>White Pine</td>
<td>Lodgepole</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Douglas Fir</td>
<td>Douglas Fir</td>
<td>Hemlock</td>
<td>Yellow Pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Predominance and Maximum</td>
<td>Yellow Pine</td>
<td>Lodgepole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ On the basis of petrographical and chemical data, POWERS and WILCOX (1964) believe that the Washington ash and the Mazama pumice are one and the same, with the source from Crater Lake, Oregon. The eruption of Glacier Peak in north-central Washington was apparently much earlier and may have occurred near the end of the Vashon Glaciation.


REFERENCE