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Abstract 
 
We estimate a model of suppression productivity for individual fires, where suppression 
productivity is measured in terms of the reduction in the estimated market value of wildfire 
losses. Estimation results show that at the margin, every dollar increase in suppression costs 
reduces resource damage by 12 cents, while each dollar invested in pre-suppression reduces 
suppression expenditures by 3.76 dollars. These results suggest that there is an over-allocation of 
fire management funds to suppression activities relative to prevention measures in terms of cost-
effectiveness.  This paper provides an empirical basis for a widely used economic model of 
wildfire management that seeks to minimize the sum of suppression costs and economic losses 
from wildfires, the cost plus net value change model of fire suppression (C+NVC).   
 
 
 
 
This research was supported by the U.S. Forest Service Sothern Research Station under 
cooperative agreement SRS 04-CA-11330143-157.
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1- Introduction 

Wildfire suppression expenditures have been rising by all accounts over the past decade 

(Ingalsbee, 2000, O’toole 2002). Since 1990, fire seasons have been more expensive than the 

initial suppression appropriations and have required emergency funding almost every year 

(GAO, 2004).  Wildfire suppression is an attempt to reduce damage imposed by wildfires.  

Economic models have been around since the 1920’s that focus on minimizing the sum of 

suppression costs and wildfire damage (Sparhawk 1925). Donovan and Rideout (2003) 

summarize this history and develop a generalization of the cost plus loss framework, more 

recently termed “cost plus net value change,” henceforth C+NVC, where C represents all the 

costs associated with suppression activities and NVC denotes net loss in resource value from 

wildfire. Since its introduction, the model has been extensively used in theoretical work on 

wildfire cost minimization and in public wildfire management decisions making. 

The foundation of the cost plus loss framework is a suppression productivity function that 

relates suppression effort to reduction in wildfire damage.   Despite the widespread conceptual 

use of the C+NVC model, to our knowledge, no one has successfully estimated a suppression 

production function, and thus no empirical basis for the C+NVC model exists for any setting. 

This paper provides an empirical basis for the cost plus loss model of fire suppression, 

and investigates the economic returns from investments in suppression activities.  Using national 

level data for individual wildfires, we estimate a model of suppression productivity, where 

suppression productivity is measured in terms of the reduction in the estimated market value of 

wildfire losses in response to suppression effort. We posit that suppression effort and a target 
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acreage (or containment area) are choice variables in the process of reducing damage from 

wildfires. We develop a structural model in which suppression effort, acreage burned, and 

resource damage are simultaneous determined within a simultaneous system of regression 

equations. The analysis is conducted using the National Interagency Fire Management Integrated 

Database (NIFMID) data and supporting data from other sources.  

Our results show that an increase in suppression expenditures reduces resources damage. 

Further, our estimates imply that that returns from investment in suppression at the margin are 

small compared to the suppression investment, suggesting an over-allocation of funding for 

suppression activities. We also find that pre-suppression activities (preparedness, in particular) 

provide substantial economic returns at the margin. Taken together, these results suggest that 

limited funding should be directed away from suppression and toward pre-suppression.  As 

discussed below, these results are intuitively plausible and intriguing on a qualitative level, but 

care should be taken in terms of the quantitative results because the definition of damage as 

defined in the data collection mechanism is limited in scope and has changed over the years.  

The rest of the paper is organized as follows. In section 2, we present a reformulation of 

the cost plus loss model of fire suppression that provides a foundation for our empirical analysis. 

Section 3 presents the estimable model. In section 4, a description of the data is provided. The 

estimation approach and results are discussed in sections 5 and 6 respectively, and in section 7 

we discuss policy implications and provide concluding remarks. 

2- Theory 

The C+NVC model has been central to theoretical discussions about minimizing wildfire 
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costs for most of this century. 1  It represents the net sum of all wildfire related costs, where C 

denotes all costs associated with fire suppression, and NVC denotes net fire related damages (see 

figure 2-1). The objective in the C+NVC model is to minimize the sum of fire management 

expenditures plus the net change in resource values due to wildfire (González-Cabán et al 1986, 

Hesseln and Rideout 1999), where expenditures on fire suppression (C) are intended to reduce 

net fire-related damages (Donovan and Rideout 2003). The theoretical framework of this paper 

builds on the Donovan and Rideout (2003) version of the C+NVC, but extends it to allow for 

endogenous and exogenous interactions between suppression expenditures, resource damage and 

total acreage burned for each fire.  

For notational convenience, assume that NVC is always non-positive, and that NVC=d 

where d defines resource damage value. The total cost of a fire is the sum of suppression costs 

and damage. Total cost for a given fire is minimized by jointly choosing the target acreage (the 

wildfire containment area) and suppression effort. We hypothesize that although increasing the 

size of the containment area will likely increase the amount of resource damage from the fire, it 

can reduce the marginal costs of suppression for a given containment area.  

The hypothesized ex-post cost function, representing the costs of a fire after the fire is 

dead out, is specified as: 

   );,();( dadsas sadsawdc ZZ εεεε +=+     (1) 
Where  

• is cost plus damage  )( dc +

• ),1(~ 2
ss σε  is a random disturbance to suppression costs with unit mean. As 

                                                           
1 See Headley 1916, Sparhawk, 1925, Simard 1976, Blattenberger and others 1984, González-Cabán and others 
1986, Hesseln and Rideout 1999 
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modeled, it can be thought of as either a random disturbance to the marginal cost, or a 

random disturbance to suppression effort, or both.  

•  is the marginal cost of suppression, which is dependent on a vector of variables w

sZ  that includes pre-suppression inputs applicable for a particular fire, and other 

determinants of marginal suppression costs.  

•  is fire the chosen target acreage (containment area) for suppression efforts. The 

actual ex-post fire acreage is  

a

aaε  where aε  is a random variable with mean and 

variance ),1(~ 2
aa σε . 

•  is suppression effort, a choice variable.  s

•  is damage from a fire, and it is a function of the actual acreage, suppression effort 

, and other factors . The error term is distributed  

d

s dZ ),1(~ 2
dd σε

 

Assume that at the margin, allowing a larger containment area is expected ex ante to reduce the 

marginal cost of suppression, so that 0w a∂ /∂ < , but that increased acreage increases damage, so 

that . Suppression effort is exerted to contain the fire within the containment area, and 

it may also reduce damage for a given number of acres, so that 

0d a∂ /∂ >

0d s∂ /∂ < .  Assume also that cost 

minimization decisions are completed prior to the fire being extinguished and that the optimal 

policy is to minimize expected cost plus net value change. Given that all disturbances are 

uncorrelated and enter the c+d function multiplicatively, the ex ante expected total costs plus net 

value change of a fire based on a target acreage, suppression effort is then:  

E[c d] ( ; ) ( , ; )s dw a s d a s+ = +Z Z    (2) 
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Assuming that the second-order conditions for a maximum hold, the first-order conditions to 

maximize E [c +d] are:  

 

0d][cE
=

∂
∂

+=
∂
+∂

s
dw

s
,   or     

                 dw
s

∂
= −

∂
      (3) 

 
 

E [c d] 0

0.

w d ss
a a s a

w ss w
a a

∂ + ∂ ∂ ∂⎛ ⎞= + × =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∂ ∂

= + =
∂ ∂

   (4)  

The first order condition with respect to suppression costs can be obtained by directly deriving 

objective function [2] with respect to suppression cost value (w s). Specifically: 

 0
)(

1
)(
d][cE

=
∂
∂

+=
∂

+∂
ws
d

ws
  

Or          1
( )

d
ws
∂

= −
∂

     (5) 

Which implies that if suppression is being applied at an efficient level, one dollar invested in 

suppression costs reduces wildfire damage by one dollar. Given diminishing returns to 

suppression, ( ) 1d ws∂ ∂ < −  means that one dollar of suppression reduces damage by more than 

one dollar at the margin and implies too little suppression; ( ) 1d ws∂ ∂ > −  means that one dollar 

of suppression reduces damage by less than one dollar at the margin and implies too much 

suppression effort. 

The ex ante derived demands for suppression and acreage are then  

     ( )s ds s∗ = ,Z Z        (6) 
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     ( )s da a∗ = ,Z Z      (7) 
We do not have data for , the actual suppression effort. However, we do have data for ex post 

suppression costs, acreage, and damage, which are defined in our model as: 

s∗

            ),( dsa
o aa ZZε=  

                 (8) ∗= aaε

 ( ; )o
s a sc w aε ε s∗ ∗= Z  

      ( ; )o
s sw a sε ∗= Z      (9) 

)( dad
o sadd Z;, ∗∗= εε      (10) 

      ,   (11) )));(/(,( ds
o

s
oo

d awcad ZZ;εε=

 

where ∗∗ ≡ sawc sas
o )(/ Z;εε  in equation [11] is derived by solving equation (9) for s∗  and 

substituting the right hand side into equation [10].  

 Actual acreage  (rather than the containment area aoa ∗ ) is included as an argument for 

the average marginal cost of suppression. In this model, the difference between the two 

represents the additional acreage resulting when a wildfire escapes the containment area. The 

actual acreage is included in equations [9] and [10] because ex post escapes may affect the 

marginal costs of suppression. However, whether ao or a* should be included as explanatory 

variable in the damage equation is an empirical question that is addressed with an endogeneity 

test for .  0a

 Equations 8, 9, and 11 are the general form for estimable equations for , , and . 

Specific functional forms must be chosen for estimation, which we discuss next. 

0c 0a od
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3. Functional forms for estimation 

Preliminary regressions suggest that the underlying disturbances aε and sε approximate 

censored lognormal distributions. Censoring issues will be addressed later. To allow linear-in-

parameters estimation, we utilize generalized Cobb-Douglas functional forms.  

 For notational ease, let Z = [Za Zs Zd], which contains all available exogenous variables, 

and let  represent the Cobb Douglas functional form for the ∏
=

=
j

j

k

ii

β
iZjZβ

thj  equation.  

First, we specify observed acreage defined in equation (8) as: 

          (12) a
o aaea εβα Z=

so that the log-linear estimable equation is  

     ln lno
a aa α β au= + +Z     (13) 

where ),0(~ln 2
aaa Nu σε= . 

 To specify  (equation 9), the functional form of the (unobserved) marginal cost of 

suppression effort must be specified. Let  

0c

 www oo aeaw δβα )();( 11 ZZ s = , or 

                             a
aaww ee εβαβα ZZ 11=

             (14) 
a

wwe εβα Z=

 

where 1w w aα α α= +  and 1w w aβ β β= + . 

Unobserved suppression effort is  

      s ss eα β∗ = .Z      (15) 
 
Putting the marginal cost and effort functions together, the suppression cost function (equation 9) 
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then becomes  

           ∗= sawc o
s

o );( sZε

          sa
o eae w εεβαδβα ssw1w1 ZZ )(=

           (16) sa
o cc ae εεβδα cZ)(=

where c w sα α α= + c w, sβ β= + wc, δ δβ = . Taking natural logs of both sides of equation [16] 

provides  

           
cc

o
c

o uac +++= Zc lnlnln βδα    (17) 

where sacu εεln= has mean zero and is correlated with . au

The damage function [10] is specified as:  

     ds
ooo ddd wcaed εε

βδδα 1d

dZ211 (.))/()(=

                                          1 1 2 2 1 2( ) ( ) ( )d d d w w d d do o
s de a c eα δ δ α β δ β δε ε− −= Z Z     (18) 

         1 2
1( ) ( )d d d do o

d de a cα δ δ β ε= Z      (19) 

Where wdd ααα += 1 , wdd βββ += 1 , wdd βββ += 1 , and 2
1

d
d s

δ
dε ε ε−= . 

Again, whether to include the original observed suppression cost and/or acreage rather than the 

estimated planned acreage and suppression costs c∗  and a∗  can be determined by an exogeneity 

test. 2  If testing shows that  and/or  are correlated with oa oc 1dε , these two variables can be 

replaced with estimated values of  and a∗ c∗ .  

 The log linear form of equation [19] is then  

       (20) 1 2 1ln ln lno o o
d d d d dd a cα δ δ β= + + + +Z du

                                                           
2The model suggests that the observed values of these variables should be uncorrelated with the disturbances, but in 
practice they may be due to measurement error or omitted variables. 
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where 2 2
1ln ~ (0, )d

dd s d uu Nδε ε−= σ .  Given the interpretation of a
o aa ε=∗/  as relating to acreage 

beyond the planned containment area, endogeneity of ao in equations [15] and [20] suggests that 

aε  is correlated with costs and damage with escapes. Further, because sε  is an element of 1dε , 

the disturbances of the cost and damage equations are correlated. Thus, there will likely be 

correlation among the disturbance terms in all-estimable equations because they are related 

through the two underlying disturbances aε  and sε .  This correlation will be accounted for to 

improve the efficiency of our estimators. 

 

4-Data  

The data used in this project were a compilation of a variety of data dating from 1970 to 

2002, and covering the continental United States. A map showing location and distribution of the 

wildfires occurring in the US for the period 1970-2002 is shown in figure 2-2. 

Fire and fire expenditure data were collected from two sources: the National Interagency 

Fire Center (NIFC), and the National Fire and Aviation Management (FAMWEB), which 

supports both the Kansas City Fire Access Software (KCFAST), and the National Interagency 

Fire Management Integrated Database system (NIFMID). These data were concatenated based 

on a unique fire identification number. All fire expenditure data (estimated fire pre-suppression 

and suppression cost), and fire damage data were deflated using the Consumer Price Index (CPI, 

base year 2000) collected from the USDL Bureau of Labor Statistics. Table 2-1 provides a 

summary statistics of the data. 

Donoghue (1982) reviews the history of wildfire data reporting and provides an 
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assessment of the Forest Service fire data.  Fire report forms are filled out by fire managers and a 

number of factors might contribute to inaccuracies. For instance, time lag between the 

occurrence of a fire and its documentation may result in imperfect recollection and therefore 

imperfect data. Also, when facing several quickly spreading fires, managers “attention to [data] 

details and accuracy might be sacrificed as efforts to save time” (Donoghue, 1982). In our 

analysis, some of the variables used, such as resource damage, are difficult to observe and may 

be vaguely defined, leading to variation across individual reports. 

The first wildfire report form was issued in 1905, and it has been changed in various 

ways between then and now. The beginning of our sample in 1970 coincides with a major re-

issuance of the report form. There are some relatively minor differences between the form in 

1970 and the form used in 2002, but a systematic accounting of these changes (and the timing of 

these changes) after Donoghue’s 1982 paper appears not to be available. However, based on 

visual examination of the data used in this analysis, there appear to be some substantial structural 

changes between 1970 and 2002 for some variables. For some variables there are significant 

numbers of missing observations, a number of variables have apparent structural changes in 

reporting.   

In addition to factors that appear to stem from inaccuracies, omissions, and changes in 

reporting is another complication for estimation because all three dependent variables are 

censored at or near zero for a substantial percentage of observations. In the next two sections, we 

present the variables and discuss how the data limitations are addressed. 
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4.1 Endogenous variables 

There are a number of characteristics and limitations associated with each of the 

dependent variables that must be addressed. We first discuss resource damage data (do), then 

suppression costs ( co) and area burned ( ao). We also discuss the relationships between these 

variables. 

Observed resource damage (do) values for the years 1985 to 1994 appear systematically 

different than the surrounding years (figure 2-3). Many zeros or very small damage values are 

reported for this period. This discrepancy is confirmed by comparing figure 2-4 with acreage 

burned and suppression costs figures for the same period (figures 2-6 & 2-9). We see for instance 

that two of the top ten total acres burned years fall within the same interval (1985-1994) in which 

resource damage values are relatively very small. To address these apparent reporting differences 

while making full use of the dataset, we account for these large shifts by using dummy variables 

corresponding to these structural shifts, and/or run regressions based on sub-samples of data. 

Another problem of resource damage data related to the previous one is the large amount 

of zeros (55.3%) and missing observations (31.1%). The high percentage of zero characterizes a 

censoring problem, which must be dealt with econometrically in order to estimate model 

parameters consistently (Maddala, 1999, chap 6). Figures 2.4-2.5 represent the log-transformed 

distributions of these data respectively with and without the censored observations. We account 

for censoring by using a Tobit model specification for our estimation and run regressions that 

either omit observations with missing damage data, or code the missing damage data as taking 

the value of zero, assuming that managers may be likely to omit a value of their estimate of 

damage is approximately zero. 
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The definition of damage in the NIFMID data is relatively vague. The “value of resources 

damaged or destroyed” includes timber values and non-timber values, including damage to 

“watershed”, “recreation”, “range and wildlife”, “improvements”, and “other non-timber.”    

Estimates of non-timber damage values as listed are likely to be very rough due to the difficulty 

of estimating these characteristics.3   More recently, estimating the net value change from a 

wildfire entails the use of additional calculation tables (and usually computer modeling) based on 

land characteristics and standardized unit values to assess net value change (National Interagency 

Fire Center 2000, Schuster and Krebs 1999). 

Estimated Forest Service suppression cost (co) accounts for the costs of suppression 

equipment (such as airplanes, helicopters and water tenders) and services (such as line crew 

labor and overhead management) to suppress forest fires (Schuster and others 1997). In 

principle, these costs are estimated for each individual fire and entered into the NIFMID 

database.  However, because deployment of equipment and personnel in some cases corresponds 

to suppression of more than one wildfire, disaggregation of cost data may in some cases be 

imperfect. Only the Forest Service related expenditures are included, while expenditures of other 

agencies are not accounted for (Schuster and others 1997).  However, the US Forest service is 

the agency most involved in wildfire suppression, and it is usually the primary actor in most 

wildfire suppression actions.  

Schuster (1999) examines Forest Service Wildland Fire Management Expenditures and 

develops aggregate estimates of wildfire expenditures. His data sources include the original 

                                                           
3 The ability to assess these non-market wildfire related damage has been a topic of research conducted by Rideout 
and others (1999) and Loomis et al. (1999), among others. 
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sources from which the NIFMID data come. In figure 2-6, we observe a low plateau in aggregate 

annual suppression costs from our dataset for the years 1983-1988, which correspond to the 

years that Schuster found a substantial amount of missing records. Figure 2-6 shows a large shift 

in the cost pattern in 1987, reflecting change in suppression and pre-suppression expenditure data 

collection and reporting, also described by Schuster (1999). We account for these effects by 

using dummy variables in the estimation. Among other data collection and reporting 

discrepancies, Schuster (1999) finds that some expenditures where labeled pre-suppression when 

in fact the expenditures where used for the suppression of wildfire.  

The suppression cost data exhibit substantial censoring, with 18.1% of the observations 

taking value zero. Figures 2.7-2.8 provide aggregate illustrations of the cost data by year, as well 

as histograms based on the natural logs of cost, with and without the censored data.  

 The final endogenous variable is total wildfire acreage (ao). Figure 2-9 shows a large shift 

in pattern in year 1987, again corresponding to data reporting changes discussed in Schuster 

(1999).  We again account for this reporting shift using dummy variables in the estimation, and 

as with resource damage and suppression costs, censoring of acreage is an issue to be addressed 

in estimation.  Sixty one percent of acreage observations take the value 0.1 (one-tenth of an acre 

is the lowest reported value for wildfires). In figures 2.10-2.11 we represent the log-transformed 

distribution for these observations with and without the censored values.   

Figures 2.12-2.14 show the relationships between resource damage, fire expenditures and 

area burned. A scatter plot of resource damage against suppression expenditures (figure 2-12) 

suggests a positive relationship, which seems to imply that fire suppression activities are related 

to higher damage levels.  Indeed, a simple ordinary least squares regression of ln(d) on ln(s) 

14 14



  

would suggest that suppression expenditures “cause” higher damage.  Given that the purpose of 

suppression is to reduce damage, this result makes no sense.  The key to this conundrum is that 

while suppression effort (as measured by expenditures here) surely tends to reduce resource 

damage, it is also the case that suppression efforts tend to be higher for larger, more damaging 

fires.  For a given fire, suppression costs and damage are jointly determined, and because 

wildfire suppression entails choosing containment areas, this is true of wildfire acreage as well.  

Our estimation approach to deal with censoring and endogeneity will be discussed later. 

 

4.2 Explanatory variables 

To estimate suppression cost, wildfire damage and acreage, we use variables such as 

topographic information, weather, and population density, all of which constitute the vectors Zj 

(j=a, c, d) of exogenous variables introduced previously. Below, we describe, these variables. 

Slope (SLOPE) is included as an explanatory variable in the model regressions because 

of the significance that it plays in fire behavior and total fuel consumption.  Slope also plays a 

crucial role for fire personnel and equipment as steeper slopes make fires more difficult to reach 

for suppression effort. For this reason the sign of slope is expected to be positive in the acreage, 

suppression cost, and resource damage equations. 

Elevation (ELEV) is another landscape characteristic included in the regression to capture 

the effect of both differences in vegetation types across elevation zones, and as a proxy to 

capture differences in the difficulty of fighting wildfires at different elevations.   

The aspect variables AN, AS are composite dummy variables representing North and 
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South facing slopes respectively. 4 Aspect will influence the amount of damage caused by a fire 

due to the amount and type of vegetation found on each respective aspect, as well as differences 

in sunlight, heat, and fuel moisture content.  

The average cumulative precipitation for the year beginning January 1 (PRCP) is 

included in the damage and costs regressions to capture the effects that cumulative rainfall and 

moisture have on fuel load growth in spring and fuel moisture content at the time of the fire. 

Maximum temperature (TMAX) is a daily state average maximum temperature on the day 

of fire ignition for the state in which the fire occurred.  Maximum temperature is included in 

damage and suppression cost regressions because temperature during the fire will affect the 

intensity and rate of spread of a fire.  

The Palmer Drought severity index (PDSI) (Palmer, 1965) uses temperature and rainfall 

information to determine dryness (NOAA). The index generally varies between -6.0 and +6.0 

where the lowest limit represents extremely dry spells and the upper limit indicates extreme wet 

spells. We collected statewide monthly observations for this variable and computed average 

annual and lagged values. Both variables (PDSI and PDSIlag)5  are included in the acreage 

regression to explain fire severity. Drought index for concurrent years are expected to have a 

negative effect on fire severity, while drought index of the preceding year are expected to affect 

fire severity positively (Swetnam and Betancourt, 1998).  

Delay (DL) is used in the regression to account for the time difference between ignition 

and discovery date of a fire. The lag in time between ignition and discovery will influence how 

                                                           
4 Variable ASPECT was coded with three dummy variables (Aspect north (AN), Aspect south (AS), Aspect flat 
(AF). The dummy AF was dropped to avoid the dummy trap; the intercept therefore corresponds to this category. 
5 We rescaled the average annual PDSI (=PDSI+10) in order to consider the logarithm 
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much damage is caused by wildfire. The larger the time lag, the more likely that the fire spreads 

into a larger one, causing greater damage. The sign of the coefficient DL is expected be positive 

in all three equations. A squared term of the time response to a discovered fire (DLsq) is included 

to capture possible quadratic effects on suppression costs.  

Pre-suppression costs (PRESUP) describe preparedness activities and expenditures 

occurring prior to a fire (e.g. planning, prevention, detection and equipment and supply 

purchases, salaries, etc). Pre-suppression costs data are available annually by Forest Service 

region. We computed and used in regressions the average pre-suppression cost for individual fire 

events for a given region and year, so that the pre-suppression value for a given fire represents 

the average preparedness expenditure in that forest service region an year in which the fire 

occurred.  The pre-suppression data are not part of the NIFMID dataset, and were acquired from 

the National Interagency Fire Center.6

Fire Intensity Level (FILhat) is included in the model because it is an estimate of fire 

behavior. High fire intensity levels are expected to cause more damage. Approximately 52% of 

the observations for this variable were missing from the dataset. Using information on other 

variables available in the data (temperature, precipitation, slope, elevation), and assuming a 

linear relationship between these regressors and the fire intensity level variable, we estimated the 

missing values based on OLS regression (see Greene, 2000, p.259).  

Population density (POPden) is believed to influence decision-making regarding 

suppression expenditures. Wildfires in areas with high population densities will more likely draw 

more suppression effort than a similar fire in less populated areas. Because wildfire locations are 
                                                           
6 Another element of the pre-suppression data corresponds to expenditures on fuel management by region and year.  
Because the specific location of these activities could not be matched to specific wildfire sites within a region, this 
component of the pre-suppression data were not useable. 
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coded either by latitude, longitude or by township, and range, we matched these locations data 

with county FIPS codes using ARC/Info and TRS2LL software. County population density was 

then merged with the wildfire dataset based on FIPS codes. We expect that higher population 

density would affect suppression cost positively presumably because more resources will be 

allocated to protect life and property. Thus population density is a proxy for values at risk in the 

region of the fire. 

Year dummy variables are introduced respectively in area burned and suppression costs 

regression (Year87), and in the resource damage regression (YearD), to capture the apparent 

changes in data collection patterns. We take into account regional specificities by introducing a 

dummy variable for each Forest Service region (Ri where i = 1,…, 9).   

Summary statistics and a descriptive summary of variables used in estimation are 

provided in Tables 2-1 and 2-2. 

5- Estimation approach 

 
To address the data characteristics described above, we specify a simultaneous Tobit 

system, we estimate the model using a three-stage minimum distance estimator developed by 

Muthén (1984), and Muthén et al (1997). 

5.1- Econometric model 

Let la be the censoring limits for dependent variable acreage ln a. Equation [13] is 

specified as:  

a
o ua ++= aaa Zα lnln β   
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Where ua is censored normal with mean zero and variance σa
2, αa and βa and are the coefficients 

to be estimated, and Za is the vector of exogenous variables.  

Similarly, we denote lc the censoring point for suppression expenditures. The econometric 

specification for equation [16] is therefore:  
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Where uc is censored normal with mean zero and variance σc
2, αc and δc are the coefficients to be 

estimated, and Zc is the vector of exogenous variables.7

Finally, we let ld, be the lower limit for resource damage. Equation [20] is thus specified as: 

   
d

o
d

o
dd

o ucad ++++= dd Zlnlnlnln 21 βδδα  
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           (23) 

Where ud is censored normal with mean zero and variance σd
2; δd and βd are the coefficients to be 

estimated, and Zd is the vector of exogenous variables affecting resource damage. 

The errors terms are trivariate normally distributed φ(.)~N (0,Ψ) and assumed 

identically distributed across observations, where covariance matrix:  

),,( dca uuu

 
7 In order to calculate the log transformation of co (and do below), zeros were set to 0.0001. 
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Given k = a, c, d, this can also be written as: 
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The structural parameters to estimate are q = (Г, Ba, Bc, Bd, Ψ) where Г is the (3 x 3) matrix of 

the dependent variables coefficients defined above. BBa =[αa, βa] is a (1 x k) vector of the 

exogenous variables coefficients for dependent variable acreage. Similarly, Bc = [αc, βc]; Bd = [αd, 

βd] represent vectors of exogenous variables coefficients for suppression cost and damage. Ψ is 

the variance-covariance matrix as defined previously. 

Dividing both sides of system (23) by Г, the reduced form of the system is derived as: 
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      (25)  

Where ),0(~ Σ(q)Niν   and ΓΓ= ΨΣ(q) -1       (26) 

The reduced system [25] contains 3 equations with all 3 dependent variables subject to 

censoring. To derive the likelihood function for estimating the vector q, one needs to account for 

the different domains of integration of the density function φ (.).  Sickles et al (1978) explain that 

for a system of G equations with S variables subject to truncation or censoring, there are 2s sub-

samples to consider in order constructing the likelihood function. In our model, 8 sub-samples 

are therefore accounted for.  

First we consider the case of an observation with all dependent variables censored, that is 

. Such observation contributes a function Ldca ldll === ln,cln,aln 1 to the total log-

likelihood function such that 

( ) dca

q

dca

qq

ddccaa

dca
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qPqPqP
ldPlcPlaP

dca ννννννφ

ννν
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Similarly, when only one of the dependent variables is censored, and the others take values 

greater than their censoring point, the contributions are the following univariate conditional log-

likelihoods functions: 
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Another domain is when two of the dependent variables are censored. In these cases, the 

contributions are the following bivariate conditional log-likelihoods functions: 
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Finally, for observations where none of the dependent variables are censored 

( l ), the contribution to the likelihood function is: n ln , ln ln , ln lno oa a c c d d= = = o

( )ZZZ ln)(ln,ln)(ln,ln)(lnL 8 qdqcqa dca Π−Π−Π−= φ  

The total log-likelihood function for the system is therefore: 

∑∑∑∑

∑∑∑∑

>>>==>=>=>==

=>>>=>>>====

++++

+++=

dcadcadcadca

dcadcadcadca

ldlclaldlclaldlclaldlcla

ldlclaldlclaldlclaldlcla

LLLL

LLLL

ln,ln,ln
8

ln,ln,ln
7

ln,ln,ln
6

ln,ln,ln
5

ln,ln,ln
4

ln,ln,ln
3

ln,ln,ln
2

ln,ln,ln
1

loglogloglog

loglogloglogLlog
 (27) 

 

The existence of discrete components (
dca ldlcla === ln,ln,ln ) in likelihood function 
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[27] corresponds to non-zero probabilities of {
ala =ln }, { clc =ln }, or { }, and these 

discrete jumps create some computational problems (see Hajivassiliou & Ruud, 1994 for a 

detailed discussion). Full information estimation can be very computationally expensive in this 

case, and the source of intractability is often the repeated evaluation of the integral type of 

functions that characterize the discrete components (Hajivassiliou & Ruud, 1994). Because of 

such complications, we obtained consistent structural parameter estimates for our model based 

on a three-stage limited information estimator proposed by Muthén et al (1984, 1997), which is 

described below.  

dld =ln

 

5.2- The Weighted Least Square Mean Variance (WLSMV) estimator 

Our econometric analysis consists of an estimation procedure proposed by Muthén et al 

(1984, 1997, 2002), and implemented in the program MPLUS. The Weighted Least Squares 

Mean Variance Estimator (WLSMV) is a minimum distance estimator that provides parameter 

estimates with robust standards errors. The Minimum Distance estimator (MD) is based on 

minimizing the weighted squared distance between the unrestricted reduced form parameters and 

the (restricted) structural parameters in an overidentified system (Cameron and Trivedi, 2005, 

Pp.202)8. Specifically, let Π  (intercept, slope); and the diagonal elements of Σ  (variances) be 

the first stage parameter estimates; and let the off diagonal elements of 

ˆ ˆ

Σ̂  (correlations) be the 

second stage estimates. The estimation procedure is as follows:  

                                                           
8 For a detailed discussion of the Minimum distance estimator, the reader is referred to Ferguson (1958) Rothenberg 
(1973) 
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1) In the first stage, the reduced form parameter estimates Π̂  and the diagonal elements of 

 are obtained by maximizing the univariate conditional likelihood described in [27]. 

The variances of the disturbance of the censored variables are estimated by maximum 

likelihood assuming a censored normal distribution. 

Σ̂

2) In the second stage, the covariance estimates in Σ̂  are computed by maximizing the 

bivariate conditional likelihood described in [27], given the first stage estimates.  

3) In the final stage, parameter estimates from the two previous stages are stacked in a 

vector [ ]ΣΠ= ˆ,ˆκ̂ . Similarly, reduced form regression coefficients and covariance matrix 

are written as a function of structural parameters Π (q) and Σ(q) (as previously defined in 

relations [25-26]) and stacked in a vector [ ])(),()( qqq ΣΠ=κ . Then, structural 

parameters q are obtained by minimizing the discrepancy function between the vector of 

estimates κ̂  and the vector depending on the structural parameters )(qκ : 

{ } { }')(ˆ)(ˆ)( qWqq -1
q κκκκ −−=FMin   

Where W is a diagonal weight matrix with its diagonal elements equal to the estimated variances 

of κ̂  (Muthén, 1984).  

A robust asymptotic covariance matrix for the vector of estimated parameters q  is: ˆ

[ ] [ ] 11'11'11'1)ˆ( −−−−−−− ΔΔΔΔΔΔ= WWVWWq nVar  

Where
q
q

∂
∂

=Δ
)(κ , and V is the asymptotic covariance matrix ofκ̂ in the case W=V (Muthén et al, 
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1997).9

Given the Tobit specification of the model, marginal effects are obtained using the 

estimated coefficients  and the predicted probabilities that a value greater than the 

censoring point is observed for each of the three choice variables. Let   be the 

vector of choice variables, Z the vector of dependent variables. 

δβα ˆ,ˆ,ˆ

][Y dca ,,=

Denoting by Φ(.) the normal CDF, marginal effects for the parameters in double-log are 

computed based on the following formula: 

 
Z
YZqΦq

Z
ZY

⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

σ
E ˆˆ

][        (28) 

Where ][Y dca=  is the vector of dependent variables at their mean values; Z is the vector of 

exogenous variables of the model (mean values),  is the vector of coefficients 

estimate; and σ denote the variances.  Similarly, for parameters in log-linear form, marginal 

effects are: 

]ˆˆˆˆ δβα[q =

 YZqΦq
Z

ZY
⎟
⎠
⎞

⎜
⎝
⎛=

∂
∂

σ
E ˆˆ

][       (29) 

Kennedy (1982) shows that a correct measure of the percentage impact of dummy variables on 

the dependent variable is obtained by using the following formula, which gives the relative effect 

on Y of a one unit change in a dummy variable associated with an given dummy variable 

coefficient estimate :  q̂

                                                           
9 For W=V, the problem is to choose the Weighted Least Squares (WLS) estimator to minimize the WLS 

function . Letting  
WLSq̂

WLSqF κ̂  be the vector of parameters to estimate, the variance for this estimator is such that 

 where V is the asymptotic covariance matrix for[ 11)ˆ( −− ΔΔ= Vq t
WLS nVar ] κ̂ . 
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1
2

ˆ ˆˆ ˆ  = E x p [ - ( ) -1 ]d q V q      (30)  

Where  is the estimated variance of . We compute the marginal effects for dummy 

variables of our system using the following expression based on equation [28] rather than the 

direct coefficients, as follows:  

ˆ ˆ( )V q q̂

q̂

    
ˆ[ ] ˆE
σ

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

Y Z d Zd Φ Y
Z

        (31) 

The final estimated structural model is specified as: 
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6- Results  

 
Table 2-3 reports the WLSMV parameter estimates and marginal effects evaluated at the 

sample means of the independent variables. We analyze these results in two steps. First, we 

discuss the results related to the economic returns from investment in pre-suppression and 

suppression activities, demographics. Second, we discuss topographic and weather coefficient 

for each equation in the system. 

Recall that the C+NVC model developed earlier suggests that $1 spend in suppression 

ought to reduce damage by $1 at the margin if suppression expenditures are allocated efficiently. 

26 26



  

From table 2-3 (equation 3), marginal effect of suppression evaluated at the sample means 

indicates that for every dollar increase in suppression costs, damage will be reduced by 12 cents. 

Given diminishing returns to suppression, this suggests that there is an over allocation of funding 

to fire suppression expenditures, all else constant.   

Regarding the influence of pre-suppression on suppression expenditures (Table 2-3, 

equation 2); our results indicate that each dollar invested in pre-suppression reduces suppression 

expenditures by 3.76 dollar, suggesting an under-allocation of funds to preparedness. 10 Taken 

together, the results that there is apparent over-funding of suppression and under-funding of pre-

suppression suggests that given a limited budget, a higher percentage of fire management 

budgets should be allocated to pre-suppression. 

Another interesting result from the damage equation relates to the coefficient on total 

area burned, which indicates that each additional acre included in the containment area 

engenders, on average, an increase of resource damage value by $1.76.  This can be compared to 

the average per-acre damage of $4.71 (based on the values in Table 2-1). Both of these numbers 

are relatively small, suggesting that the data on resource damage (called NVC in the forest 

service report forms) may perhaps underestimate the full value of damage.  Nonetheless, it is 

noteworthy that increases in the estimated containment area lead to a relatively low per-acre 

addition to damage.   

Our estimation results also show that an increase in the containment area by 1 acre 

                                                           
10 We also estimated the model with a smaller sample of the data. That is, from the original sample of 307452 we 
delete all missing observations and all observations for the period 1985-1994 because damage data observations are 
mostly missing or recorded as zero. This sub-sample of 207636 observations is use for estimation. We find in this 
case that $1 invested in suppression reduces the extent of damage by 5 cents and $1 invested in pre-suppression 
reduces suppression expenditures by $ 3.26. While these new results still indicate an over-allocation of funding to 
fire suppression, they differ from the ones we found using the complete sample (especially for the returns from 
investment in suppression) indicating that various results can be observed based on different samples. 
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reduces total suppression costs by $4.81 (Table 2-3, equation 2). Based on this result, we 

calculate the marginal effect of acreage increase on per acre suppression costs (∂ w/∂ a), which 

amounts to $4.87. 11This result supports our hypothesis that allowing larger acreage reduces the 

average marginal cost of suppression.  

Now consider the effects of other control variables in the regressions. We find that 

increasing population density negatively affects suppression expenditures instead of positively as 

hypothesized.  It might be the case that increasing population in fire prone areas induces local 

authorities to increase the number of fire departments, personnel, and equipment for fire 

protection. This preparedness, not captured in the forest service data, might result in a reduction 

of the suppression expenditures. Furthermore, wildfire fuels may be more fragmented in highly 

populated areas, making suppression less costly. 

Topographic characteristics of fire areas such as slope, elevation and aspects play a 

crucial role in fire management because they affect fire severity, initial attack suppression 

strategies and therefore affect fire fighting expenditures and damage values. For instance, steep 

slopes may cause rapid fire-spread and therefore may increase the total acreage burned and also 

suppression costs and related damages because of the difficulty for firefighter access in steep 

terrain (Mattsson et al, 2004, Viegas 2004). Our results confirm the positive effect of slope 

variable on acreage and suppression expenditures but not on resource damage. We find that fires 

occurring at high elevations result in smaller areas burned, but lead to an increase in suppression 

cost and resource damage. The literature regarding the interpretation of the effects of elevation 

                                                           
11 In table 2-3, a

c
∂
∂ =$4.81. We find marginal effect of acreage increase on per acre suppression costs as follows: 

( ) aa
c

a
c

a
w 1−= ∂

∂
∂
∂ where a  and c are the mean values for acreage and costs reported in table 2-1. 
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level on area burned and costs associated to fire provides mixed results. Some studies argue that 

large size fire (the most costly in general) can originate at any elevation level, and some others 

posit that the probability that a fire spreads to become a large fire is lower at high elevations 

levels (Parsons, 1981, Caprio & Swetnam 1995). These arguments indicate that high elevation 

does not necessarily lead to smaller acreage burned and costs especially when we look at 

individual fires, which is the case in this paper. Further, it is important to account for the “time 

response to a fire” factor, as it will greatly determine the rate of fire spread. Finally, we find that 

south and north facing aspects increase costs and resource damage from fire, which result is 

consistent with theory.  

Cumulative precipitation and maximum temperature on fire discovery date are included 

in the model to capture effects of the weather. Our results show, consistent with theory, that 

rainfall reduces suppression expenditures and net damage value, presumably because it increases 

fuel moisture. High temperatures on the other hand increase suppression costs. In table 2-3 

(equation 1), an important variable that explains area burned is the Palmer’s drought index. For 

some specific fuel and forest types, studies have found a negative relationship between fire 

severity and the drought index of the concurrent year and a positive relationship between fire 

severity and the drought index of the preceding year (Swetnam and Betancourt, 1998). Our study 

is consistent with these findings in that concurrent year’s drought index reduces fire severity and 

area burned by fire.  

 

7-Conclusion  

While most cost effectiveness analyses for wildfire suppression are rooted in the cost plus 
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net value change model, effective use of this model requires knowledge about suppression 

productivity. However, to our knowledge, the existing fire economics literature provides no 

empirical estimates of the effectiveness of suppression activities in reducing costs and losses 

associated with wildfires.  

This paper provides an empirical basis for the C+NVC model by estimating a wildfire 

suppression productivity function. Accounting for censoring and endogeneity issues, we 

construct a simultaneous Tobit model with area burned, suppression expenditure and resource 

damage jointly determine within a system of equations. Empirical analysis is based upon a three 

stage limited information estimator known as the Weighted Least Squares Mean Variance 

(WLSMV).  

Among the most interesting results is that at sample means, the marginal dollar of 

suppression expenditures provides on average only 12 cents worth of damage reduction, 

suggesting that suppression is over applied. On the other hand, the marginal dollar of pre-

suppression expenditures provides $3.76 worth of suppression expenditure reduction.  These two 

results taken together support the idea that pre-suppression is under-applied relative to 

suppression investment. 

   Table 2-1: Summary statistics                   (N = 307452) 

 
 

Variable Mean Std. Dev. Min Max

Population density 63.9457 261.6049 0.17937 3496.198
Resource damage 245.34 12585.17 0 * 2491128
Suppression cost 182.279 5850.343 0 * 1212722
Acres burned 54.013 1817.981 0.1 499945
Pre-suppression cost 133.369 120.2905 0 * 1579.071
Aspect north 0.34808 0.476362 0 * 1
Aspect south 0.41453 0.492642 0 * 1

 
 
 
 
 
 
 
 

30 30

Slope 23.2778 23.67368 0 * 150
Elevation 4757.38 2733.28 0 * 88000
Delay 0.02707 0.541472 5 * 273.9583
Maximum Temperature 82.9971 11.47739 9.30882 109.0496



  

 
 
 
 
 
 
 
 
 
 
 
 
 

* Changed to 0.0001 to allow for log transformation used in the model estimation 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
Table 2-2: Data Description  

 
 
 
 
 
 
 
 
 

31 31

Aspect at ignition (defined as a dummy):  
1 if facing south (AS), 0 if not (AN)

ASPECT (AS, AN)

Fire intensity level (estimated value)FIRE INTENSITY LEVEL 
(lnFILHAT)

Population per square miles POPULATION DENSITY (lnPOPden)

Pre-Suppression costs (base year 2000)PRE-SUPPRESSION (lnPRESUP)

Total area burned per fire (acres)ACREAGE (lnA)

Suppression cost, (base year 2000)COST (lnC)

USFS estimate of Resource Damage.  Generally includes only 
market value of timber and a crude estimate of recreation 
value (base year 2000)

DAMAGE (lnD)

DescriptionVariables

Aspect at ignition (defined as a dummy):  
1 if facing south (AS), 0 if not (AN)

ASPECT (AS, AN)

Fire intensity level (estimated value)FIRE INTENSITY LEVEL 
(lnFILHAT)

Population per square miles POPULATION DENSITY (lnPOPden)

Pre-Suppression costs (base year 2000)PRE-SUPPRESSION (lnPRESUP)

Total area burned per fire (acres)ACREAGE (lnA)

Suppression cost, (base year 2000)COST (lnC)

USFS estimate of Resource Damage.  Generally includes only 
market value of timber and a crude estimate of recreation 
value (base year 2000)

DAMAGE (lnD)

DescriptionVariables



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2-3: WLSMV Estimation results  

 
 
 
 Variable 

Coefficient Confidence 
interval

Marginal 
effect

Coefficient Confidence 
interval

Marginal 
effect

Coefficient Confidence 
interval

Marginal 
effect

Equation 1                               
Dependent = LN (ACRES)

Equation 2                             
Dependent = LN (COST)

Equation 3                              
Dependent = LN (DAMAGE)

32 32

INTERCEPT ------ ------ ------ ------ ------ ------ ------ ------ ------

LN (ACRES) ------ ------ ------ -1.737* 
(0.295)

[-2.315; -1.159] -4.81 2.853* 
(0.165)

[2.53; 3.177] 1.76

LN (COST) ------ ------ ------ ------ ------ ------ -0.663* 
(0.021)

[-0.704;-0.622] -0.12

YEAR1 1.592* 
(0.018)

[1.556; 1.628] 3.91 7.875* 
(0.472)

[6.951; 8.799] 2629 ------ ------ ------

LN (PPDSI) -0.018  [-0.097; 0.061] -0.04 ------ ------ ------ ------ ------ ------



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: Standard errors are in parenthesis 
 
*   Significant at 1% 
** Significant at 10% 
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Figure 2-1: C+NVC model (Donovan and Rideout, 2003) 
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Figure 2-2: Distribution of wildfires in the U.S. 1970-2002 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Number of fires 
Total         = 307452 
Region 1   = 7077         Region 2   = 16314  Region 3   = 71378  Region 4   = 29496 
Region 5   = 72554          Region 6   = 55834 Region 8   = 50049   Region 9   = 4750 
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Figure 2- 3: Resource Damage                Figure 2-4: log- transformed damage     Figure 
2-5: log-transformed damage            
   without censored observations 

 
 
 
 
 
 
 
 
 
 

Figure 2-6: Suppression costs        Figure 2-7: log- transformed costs    Figure 2-8: log- 
transformed costs                  
without censored observations 

         
 
 
 
 
 
 
 
 

Figure 2-9: Total acres burned          Figure 2-10: log- transformed acres        Figure 2-
11: log- transformed acres                              
without censored observations    

 
 
 
 
 
 
 
 

  Figure 2-12: Scatter plot of              Figure 2-13: Scatter plot of          Figure 
2-14: Scatter plot of 

Resource damage vs. Costs        Suppression vs. Pre-suppression           Resource 
damage vs. Acres  
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